On the 2-absorbing Submodules

نویسندگان

چکیده مقاله:

Let $R$ be a commutative ring and $M$ be an $R$-module. In this paper, we investigate some properties of 2-absorbing submodules of $M$. It is shown that $N$ is a 2-absorbing submodule of $M$ if and only if whenever $IJLsubseteq N$ for some ideals $I,J$ of R and a submodule $L$ of $M$, then $ILsubseteq N$ or $JLsubseteq N$ or $IJsubseteq N:_RM$. Also, if $N$ is a 2-absorbing submodule of $M$ and $M/N$ is Noetherian, then a chain of 2-absorbing submodules of $M$ is constructed. Furthermore, the annihilation of $E(R/frak p)$ is studied whenever $0$ is a 2-absorbing submodule of $E(R/frak p)$, where $frak p$ is a prime ideal of $R$ and $E(R/frak p)$ is an injective envelope of $R/frak p$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CLASSICAL 2-ABSORBING SECONDARY SUBMODULES

‎In this work‎, ‎we introduce the concept of classical 2-absorbing secondary modules over a commutative ring as a generalization of secondary modules and investigate some basic properties of this class of modules‎. ‎Let $R$ be a commutative ring with‎ ‎identity‎. ‎We say that a non-zero submodule $N$ of an $R$-module $M$ is a‎ ‎emph{classical 2-absorbing secondary submodule} of $M$ ...

متن کامل

2-absorbing $I$-prime and 2-absorbing $I$-second submodules

Let $R$ be a commutative ring and let $I$ be an ideal of $R$. In this paper, we will introduce the notions of 2-absorbing $I$-prime and 2-absorbing $I$-second submodules of an $R$-module $M$ as a generalization of 2-absorbing and strongly 2-absorbing second submodules of $M$ and explore some basic properties of these classes of modules.

متن کامل

On 2-absorbing Primary Submodules of Modules over Commutative Rings

All rings are commutative with 1 6= 0, and all modules are unital. The purpose of this paper is to investigate the concept of 2-absorbing primary submodules generalizing 2-absorbing primary ideals of rings. Let M be an R-module. A proper submodule N of an R-module M is called a 2-absorbing primary submodule of M if whenever a, b ∈ R and m ∈M and abm ∈ N , then am ∈M -rad(N) or bm ∈M -rad(N) or ...

متن کامل

ایده آل های 2- جذب کننده در حلقه های جابجایی on the 2-absorbing ideal of commutative rings

چکیده: در این پایان نامه تعمیمی از ایده آل های اول را با عنوان ایده آل های 2- جذب کننده معرفی می کنیم. ایده آل واقعی و ناصفر i از r را ایده آل 2- جذب کننده نامیم، هرگاه به ازای a,b,c ? r ، اگر abc ? i ، آنگاه داشته باشیم ab ? i یا ac ? i یا bc ? i . ویژگی های ایده آل ها و رادیکال آن ها را مورد مطالعه قرار می -دهیم و اطلاعاتی درباره ایده آل های اول وابسته حلقه r/ i به دست می آوریم. در ادامه اید...

Finite unions of submodules ON FINITE UNIONS OF SUBMODULES

This paper is concerned with finite unions of ideals and modules. The first main result is that if N ⊆ N1 ∪N2 ∪ · · · ∪Ns is a covering of a module N by submodules Ni, such that all but two of the Ni are intersections of strongly irreducible modules, then N ⊆ Nk for some k. The special case when N is a multiplication module is considered. The second main result generalizes earlier results on co...

متن کامل

On Unitarily Equivalent Submodules

The Hardy space on the unit ball in C provides examples of a quasi-free, finite rank Hilbert module which contains a pure submodule isometrically isomorphic to the module itself. For n = 1 the submodule has finite codimension. In this note we show that this phenomenon can only occur for modules over domains in C and for finitely-connected domains only for Hardy-like spaces, the bundle shifts. M...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره None

صفحات  131- 137

تاریخ انتشار 2015-04

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023